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PRODUCTION OF LARGE WARM PLASMAS BY
STAGED LASER HEATING OF SOLID TARGETS

1. INTRODUCTION:
This paper describes the initial results of an experiment that was

designed to produce a large, warm plasma that could be used as an ini-
tial plasma to be heated in a higher temperature containment device, or
simply used as a source of clean, high-s'plasma to be used in basic
plasma physics studies, such as the study of the plasma losses from
magnetic cusps.

This paper is organized in the following way: First, we shall de-
scribe the method of plasma production; then the results of our diag-
nostic effort and the plasma properties, and finally we will try to
correlate the plasma properties with the results of our earlier study
of the gas clouds produced by a Nd-Gl laser pulse.

II. METHOD OF PLASMA PRODUCTION:
Figure 1 illustrates the method of plasma production. The tip of

a 0.5 X 0.5mm polyethylene filament is irradiated by a tailored pulse
from a 100 joule Nd-Gl laser. The laser beam is focussed and produces
an intensity of about 2.5 X 10'! watts/cm®. The initially created
plasma, of 4 X 10'7 particles, rapidly blows off, leaving a cloud of
(CH,)n vapor and particulate matter that expands slowly, at a rate
of about 10°cm/sec. This cloud is allowed to expand for several micro-
seconds, until its density is of the order of 10'? cm™ and then it is
irradiated by a focussed CO, laser pulse with an energy of about 1000J
and a peak intensity of 2 X lO9 watts/cm?®. This second laser pulse
essentially produces a laser spark, and completely ionizes the cloud.

Note: Manuscript submitted February 4, 1977.




Figure 2 is a schematic diagram of the top view of the experiment.
The laser beams are focussed by 1.0 meter focal length lenses. The
polyethylene filament lies perpendicular to the plane of the figure.
The base pressure in the vacuum chamber is about 3 X 108 T, The
calorimeter and photon drag detectors measure the CO, laser energy
transmitted through the target. After the plasma is created, it is
observed holographically and spectrographically. The light path of
the holographic system is in the plane of the figure,through two five
inch diameter windows, and not quite perpendicular to either laser beam.

Figure 3 shows the timing sequence of the lasers and also their
pulse shapes. The Nd-Gl laser pulse length is about 4Onsec and it is
preceded by a pre-pulse, which is necessary if the cloud is to contain
more vapor and less particulate matter. The CO, laser signal is ord-
inary. It contains about 30% of its energy in a 7Onsec peak and the
remainder in a tail that extends to about 2;,sec. The energy in the
pulse is between 600 and 700 Joules and the peak power is about 2GW.
The CO, laser is followed by a 20nsec wideg ruby laser pulse that holo-
graphically records the plasma properties. In the experiments reported
here, the interval between the Nd-Gl and CO, laser was kept relatively
constant, and the plasma evolution was studied by varying the time of
the holographic record,
III. EXPERIMENTAL RESULTS

Figure 4 is a holographic interferogram taken 300 nsec after the
CO, laser peak. As with an interferogram made with a Mach-Zehnder in-
terferometer, fringe shift is proportional to index of refraction
variations and, therefore, plasma density variations. The CO, laser
is incident from the right, in the direction of the arrowhead, and the
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Nd-Gl from the left. The three squares on the left are each 1 cm
square, and allow the interferogram to be scaled. Notice the sharp
front, that it is expanding toward the coz laser, and that at its max-
imum it has traveled over 3 cm in 300nsec. At the time of this picture,
less than half of the CO, laser energy has been emitted.

Figure 5 is an interferogram taken 1300 nanoseconds after the peak
of the CO, laser, after nearly all of the laser energy has been emitted.
Notice that the plasma expanding toward the CO, laser has expanded out
of the picture, and that a second front, not nearly as sharp as the
first, is expanding in the opposite direction. We intend to study the
relation between this second front and the CO, laser tail in experiments
in which the laser tail has been eliminated.

Assuming cylindrical symmetry, these interferograms can be Abel in-
verted and the plasma density as a function of position can be calculated.

Figure 6 is a set of isodensity contours, calculated from inter-
ferograms taken at various intervals after the peak of the CO, laser
pulse. The curves refer to electron densities of 1C'® cm™, 2 X 1018,
107, 2 X 107 and 10*® cm~3. Integration over the plasma volume re-
sults in a total number of electrons of about 2 X 10*°, The upper right
hand diagram in this figure illustrates the initial neutral density.

Figure 7 is the spectrum of light in the visible and u-v range
that is emitted by the plasma. The optic axis of the spectrograph
crosses the CO, laser axis about 5mm in front of the polyethylene target.
The presence of the CIV lines indicate that the plasma ions are mostly
#' and ¢ . Also the half width of the K line, 80A°, which corre-

sponds to an electron density of 2 X 1007 cm=?, is consistent with the

densities camputed fraom the interferograms.
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IV. COMPARISON WITH EARLIER WORK

Figure 8 is a plot of the neutral density distribution at the time
the CO, laser is fired. This curve is the result of our previous study,
to be published in JAIﬁ which showed that the gas cloud density from a
Nd-Gl laser evaporated target falls as e-r/ro where ro increases line-
arly with time. The constants in the expression are consistent with a
fully ionized plasma of 2 X 10*? electrons, .6 X 10'° H' and .3 X 10%?
CQ“ . Eighty percent of the CO, laser energy falls within a radius of
0.5 em, which contains less than 30% of the neutrals. The laser pulse
heats the cloud center, which in turﬁ ionizes the exterior atoms by u-v
and x-radiation. The hot central cloud then expands, sweeping the
cooler background plasma with itself., The values of the coulomb mean
free path of the 50eV expanding plasma through the background plasma
show that to distances of about 3 cm, a narrow front should be expect-
ed. We believe that the initial front that expands toward the CO,
laser is generated by the initial spike of the laser signal and the
second is due to the remainder and bulk, of the signal.

Finally, the last figure (9) is shown for any disbelievers who
doubt the necessity of the Nd-Gl laser to this experiment. This figure
shows that, without the Nd-Gl laser pulse, essentially the entire CO,
laser pulse is transmitted through the target area while, with the
Nd-G1 pulse, only about 20% is transmitted.

In conclusion let us mention our plans for this work. We want to

1) Do a study in which the Nd-Gl laser -CO, laser interval is varied.
2) Study the effect of varying the CO, laser pulse shape.

3) Apply a cusp magnetic field to the plasma,




4) Measure temperature using laser scattering techniques.
5) Use a deuterium target.
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Fig. 1 — The plasma is produced by irradiation of a polyethylene filament
by a Nd/glass laser pulse, followed by a CO, laser pulse
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Fig. 3 — Oscillograph recordings of the laser signals showing the time
relationships of the Nd/glass, CO,, and ruby lasers
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Fig. 7 — Spectral distribution of light emitted by the plasma between 2000 A and 6000 A
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Fig. 8 — Spatial distribution of (CH, ), vapor immediately
before the CO, laser emission
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MEASURED MEASURED
INCIDENT TRANSMITTED
TARGET CONDITION ENERGY ENERGY

NO TARGET 646 J 650J

(CH,),, TARGET IN PLACE

719J 638 J
NO Nd-GI LASER
(CHp)n TARGET IN PLACE
AND VAPORIZED BY 670 J 100 J

Nd -Gl LASER

Fig. 9 — The result of measurements of the CO, laser pulse
transmission through the (CH,), target
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